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Abstract: This paper attempts to analyze the relationship between social network activity (message sentiment) and
stock market (trading volume and risk premium). We used Artificial Neural Networks to analyze 87,511 stock-related
microblogging messages related to S&P500 Index posted between October 2009 and October 2014. The results
obtained suggest that there is a direct relationship between trading volume and negative sentiment, and between
risk premium and negative sentiment. The paper concludes with several directions for future research.
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Introduction

The recent advances in technology have made it possible to access more information almost instantaneously. In a
world where information has a great importance, as in the case of the financial world and especially in financial
markets, these advances have reached a great relevance. When we talk about information, it is necessary to talk
about social media, and particularly about social networks. The number of social network users is constantly
growing. The amount of information shared through social networks is also increasing, and financial markets
are not indifferent to this phenomenon. Furthermore, when the new language analysis software appeared, it
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opened new avenues for researchers. The sentiment analysis of sentences allows measuring what people think and
relating it to different events. Along this line, several studies analyzed the relationship between social network
sentiment and the stock market (Oh and Sheng, 2011; Rao and Srivastava, 2012; Bissattini and Christodoulou,
2013; Oliveira et al., 2013), and found that sentiment can help in predicting stock market variables such as trading
volume, returns, or market movements. Nevertheless, in order to obtain a better prediction, it is necessary to
take many more variables into account, such as market risk (Ribeiro-Soriano and Urbano, 2010), or Tobin’s Q
(Piñeiro-Chousa et al., 2016), as well as other information from social networks (e.g., message volume, certain user
profile characteristics) (Piñeiro-Chousa et al., 2017). Still, we observe a gap in this area, since most of the papers
published about social networks and the stock market analyze the influence that social network sentiment has in the
stock market. However, there are few studies about the inverse relationship—that is, how stock market variables
influence social network sentiment (Piñeiro-Chousa et al., 2016).

In this study we analyzed the relationship between social network sentiment and the financial markets, focusing
on the influence of stock market variables on social network sentiment. For this purpose, we considered trading
volume and other financial variables like a measure of market risk through the risk premium, calculated as the
difference between the price of BAA Yields and AAA Yields. Additionally, we included message-related variables,
like the number of tweets and user experience. Among all the data-mining techniques, we decided to use an artificial
neural network (ANN) for the analysis since it is more adaptive to real-world situations and does not suffer from
statistical model constraints (Aktan, 2011).

Literature Review

Information plays a relevant role in financial markets. At present, there is an enormous amount of readily accessible
information that investors can benefit from to make their investment strategies. At the same time, researchers can
use this information to improve the quality of their studies about market behavior. In this sense, it is necessary
to talk about an increasingly relevant source of information and research data: social media. In recent years,
advances in technology facilitated social media to gain popularity in society through blogs, microblogging sites,
forums, and social networks. Investors use these sources of information to make their decisions whilst researchers
use them to analyze financial market activity (Wysocki, 1998; Antweiler and Frank, 2004). Thus, data from blogs
like RagingBull.com (Tumarkin and Whitelaw, 2001), from news sites like Yahoo! Finance (Antweiler and Frank,
2004) or LiveJournal (Gilbert and Karahalios, 2010), or from social networks like Twitter (Asur and Huberman,
2010; Sprenger et al., 2014) or StockTwits (Piñeiro-Chousa et al., 2017) can help to explain stock market activity,
and even to improve stock market predictions (Oh and Sheng, 2011). Among these new studies, there are a group of
papers that analyze the sentiment of messages posted in social networks. For example, Asur and Huberman (2010)
extracted sentiment from Twitter with the aim of predicting market behavior. Sprenger et al. (2014) showed that
the sentiment extracted from tweets was associated with the stock abnormal performance. Zhang et al. (2011)
analyzed the mood derived from Twitter posts to predict the Dow Jones, S&P 500, and NASDAQ performance.
Bollen et al. (2011) improved the accuracy of DJIA predictions using public mood dimensions extracted from Twitter.
Furthermore, it has been shown that social network sentiment can help in predicting stock market movements
(Oh and Sheng, 2011; Makrehchi et al., 2013; Bissattini and Christodoulou, 2013).

Most of the papers are focused on the effect that social media sentiment has on stock markets, but not many
studies analyze market influences on social networks. In this sense, some papers have shown that trading volume
relates with the volume of posted messages (Tumarkin and Whitelaw, 2001; Sprenger et al., 2014). Regarding the
influence of stock market variables in social networks, it has been shown that certain variables such as Tobin’s Q,
the P/E ratio, or market capitalization influence social network sentiment (Piñeiro-Chousa et al., 2016). For this
reason, it seems reasonable to suppose that other market variables could also have influence. For this purpose, we
propose the following hypotheses:
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Hypothesis 1: Risk premium and trading volume influence social network sentiment.

It has been shown that social network variables such as experience or the number of followers influence the stock
market (Sprenger et al., 2014), and are related to social network sentiment (Piñeiro-Chousa et al., 2016). For example,
an experienced investor would react differently to a situation of increased risk compared to an inexperienced investor.
In this sense, we propose the following hypothesis:

Hypothesis 2: Users’ experience and number of followers influence social network sentiment.

Methodology

Neural networks consist of a layered, feed-forward, completely connected network of artificial nodes, which can be
used for classification or estimation (Larose, 2006). Neural networks can have different uses, including descriptive
and predictive data mining (Alan et al., 2014). Artificial neural networks (ANN) are a machine learning tool
based on computational models inspired by biological neural networks (i.e., the human central nervous system).
The multi-layer perceptron (MLP) is the most extended ANN algorithm for financial prediction. The MLP is
composed of three layers: (a) the input layer, containing the predictors (i.e., attributes); (b) the hidden layer,
containing the unobservable nodes; and (c) the output layer, containing the responses (Aktan, 2011). The most
frequently used algorithm for learning MLP is the back-propagation algorithm (BPA), which uses a gradient descent
that can find local minimum (Aktan, 2011).

According to Alan et al. (2014), an MLP has three characteristics: (a) the model of each node in the network
usually includes a nonlinear activation function, either sigmoidal or hyperbolic; (b) the network includes one or
more layers with hidden nodes that do not belong to the network input or output. They allow the network to learn
complex and nonlinear tasks through the progressive extraction of meaningful characteristics from the patterns of
the input; and (c) the network shows a high degree of connectivity from one layer to the next.

In the financial context, ANNs have been used for bankruptcy (Odom and Sharda, 1990) and bank failure
prediction (Tam and Kiang, 1992), to estimate the future financial health of firms (Coats and Fant, 1993), to predict
bankruptcy filing (Boritz and Kennedy, 1995), or to examine financial distress (Etherige and Sriram, 1997; Hu and
Ansell, 2006).

We used the WEKA (Waikato Environment for Knowledge Analysis) program, version 3.7, developed in Waikato
University. WEKA is open-source software that supports many categorizing, piling, and coupling rules algorithms.

Data and Variables

We chose StockTwits.com as our source for social network data, since it is only used by the financial community. As in
Twitter, StockTwits.com users can label stock-related messages by a dollar sign followed by the related ticker symbol
(e.g., $SPX), making it easy to collect the information. We collected 87,511 stock-related microblogging messages
holding the ticker symbol of S&P500 Index during the analyzed period (i.e., from October 2009 to October 2014).
Our study focused on the S&P500 Index and on the companies mentioned in S&P500 Index messages, representing
a total of 490.

We analyzed the sentiment of each message posted through the sentiment analysis software Stanford CoreNLP
Natural Language Processing Toolkit, developed by Manning et al. (2014). We obtained a sentiment value for each
message. This value fluctuates between −2 (which refers to a very negative sentiment) and 2 (which means a very
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positive sentiment). A neutral sentiment has a value of 0. Then, we aggregated the data on a monthly basis, and
calculated the average sentiment for each month and for each company as follows:

sentit =

∑m
j=0 Sjt ∗mjt∑m

j=0 mjt
,

where Sjt is the sentiment j about ticker i in moment t, and mjt is the number of messages with sentiment j in
moment t.

We turned the sentiment variable into a dummy variable, being 0 for negative values and 1 for positive and
neutral (equal to 0) values.

We collected financial data in daily intervals for the S&P500 Index from Nasdaq.com and Morningstar.com,
which allows Microsoft Excel R© files to be downloaded with daily data of the companies that belong to the index.
We also downloaded the monthly price of AAA and BAA Yields from the Federal Reserve web to calculate the
risk premium.

The class attribute was the sentiment. This variable was nominal, with values of 0 and 1.
The variables for the ANN were trading volume (vol), user experience (exp), message volume (not), and risk

premium (premrisk).
The variable vol is calculated as the amount of the trading volume for each company and for each month.

We only used the trading volume data of days when the company was mentioned in messages.

volit =

m∑
j=0

Vjt,

where Vjt is the trading volume j about company i in moment t, j = {1, 2, . . . , m}.
The variable exp is the average experience of users that mention a company in a given month. Experience

is rated in a scale from 1 (novice) to 3 (professional). This classification is given by the users when they fill their
profile in StockTwits.com.

The variable not is the count of the total number of microblog messages about a ticker (company) for each month.
The variable premrisk is the difference between the price of BAA Yields (considered as bad yields) and AAA

Yields (considered as good yields):

premrisk = Y ield (BAA)− Y ield (AAA) .

Additionally, we considered time variables, specifically annual (year) and quarterly (trim) variables.
Our final dataset was composed of 5281 instances and 7 attributes (sentiment, year, trim, vol, exp, not,

and premrisk).

Results

We applied a multilayer perceptron (MLP) classifier, which uses a back-propagation algorithm, for classification.
Results are shown in Table 1. The Kappa statistic was 0, which means that there was no correlation between
attributes. The fit is remarkable, with a true positives rate over 95% and precision over 90%.

Table 1 ANN results.
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Figure 1 shows the neural network, where the output layers were negative and positive sentiment. Table 2
shows that one node (node 4) clearly stood out above the others, with a weight of 2.79. The second node with higher
weight was node 3 (1.73). This figure shows that node 4 was the most prominent, since its weight was approximately
61% higher than the weight of the second. The weight of node 4 was positive, which means that this node had a
positive influence in node 0, which represents the negative sentiment.

Figure 1 Artificial Neural Network output.

Table 2 Node 0 weights.

The weights of attributes in node 4 are shown in Table 3. When trading volume increased, negative sentiment
increased as well. This could relate to an increase of trading volume leading to an increase of share sales, due to a
panic situation in the stock market. Additionally, when risk premium increased, negative sentiment increased as
well. These results confirm Hypothesis 1. Additionally, when a post was written by a professional user, negative
sentiment arose, partially confirming Hypothesis 2. This may relate to professional users posting more messages
when things go wrong.
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Table 3 Node 4 weights.

Regarding time variables, years 2010 and 2013 had the highest weights. In 2010, the positive weight means
that negative sentiment increased due to the maintenance of the financial crisis that began in 2008. On the contrary,
in 2013 the weight was negative, which could relate to either the crisis recovery in the USA, or to the sovereign
debt crisis in Europe, which caused international investors to move investments from Europe to the USA, creating
a substitution effect.

Conclusions

In this paper, we analyzed the relationship between market variables (i.e., trading volume and risk premium) and
social network variables (i.e., sentiment, user experience, and message volume). The results suggest that social media
can reflect what happens in the market. For example, if there is an increase in market risk premium, it could lead
to a higher negative sentiment. Several papers have proven that social media data can be used to predict market
movements (Oh and Sheng, 2011; Makrehchi et al., 2013; Bissattini and Christodoulou, 2013). Therefore, we proved
that the market activity also influenced the social media activity, so the relationship can be understood in both
directions. Regarding our results, investors and companies must pay attention to social networks, since a message
about a company posted in Twitter or StockTwits could cause an increase or a decrease in its stock price. Thus, our
analysis of social media activity and investment strategies could be the starting point for further studies in this area.
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